Maximal *k*-Edge-Connected Subgraphs in Almost-Linear Time for Small *k*

Thatchaphol Saranurak University of Michigan Wuwei Yuan IIIS, Tsinghua University

ESA'23

Maximal *k*-Edge-Connected Subgraphs Problem

- Graph G is k-(edge-)connected if one needs to delete at least k edges to disconnect G
- Input: undirected unweighted graph G = (V, E)with n = |V| and m = |E| and number k

- *G*[*V_i*] is *k*-connected, and
- there is no $V'_i \supset V_i$ where $G[V'_i]$ is k-connected
- Dynamic k-connected subgraphs problem: maintain k-connected subgraphs under updates

$$k = 3$$

k-Connected Components

- Two vertices s and t are k-connected in G if one needs to delete at least k edges to disconnect s and t in G
- Set of vertices S is k-connected if every pair of vertices in S is kconnected
- k-connected component: maximal kconnected subset

Computable in $O(m^{1+o(1)})$ time [Abboud Krauthgamer Li Panigrahi Saranurak Trabelsi FOCS'22]

Applications

Rasmussen Thorup ICALP'23]

Previous Works

Reference	Time	Constraints
Folklore	$ ilde{O}(mn)$	Randomized
[Chechik Hansen Italiano Loitzenbauer Parotsidis SODA'17]	$\tilde{O}(m\sqrt{n}k^{O(k)})$	
[Forster Nanongkai Saranurak Yang Yingchareonthawornchai SODA'20]	$\tilde{O}\left(mk+n^{3/2}k^3\right)$	Randomized
[Georgiadis Italiano Kosinas Pattanayak '22]	$\tilde{O}\left(m+n^{3/2}k^8\right)$	

All above algorithms require $\Omega(n^{3/2})$ time when m = O(n) and k = 3

 $ilde{O}(\cdot)$ hides polylog factors

Previous Works

Reference	Time	Constraints
Folklore	$ ilde{O}(mn)$	Randomized
[Chechik Hansen Italiano Loitzenbauer Parotsidis SODA'17]	$\tilde{O}(m\sqrt{n}k^{O(k)})$	
[Forster Nanongkai Saranurak Yang Yingchareonthawornchai SODA'20]	$\tilde{O}\left(mk+n^{3/2}k^3\right)$	Randomized
[Georgiadis Italiano Kosinas Pattanayak '22]	$\tilde{O}\left(m+n^{3/2}k^8\right)$	
This work	$O\left(m+n^{1+o(1)}\right)$	$k = \log^{o(1)} n$

 $ilde{O}(\cdot)$ hides polylog factors

Definitions

- E(S,T): set of edges between S and T
- Vertex set S is a k-cut if $|E(S, V \setminus S)| < k$

Our Approach

- Key idea: maintain list of vertices L, which contains at least one vertex from each k-cut
- Initially, $L \leftarrow V$
- While |L| > 1
 - Choose arbitrary $u, v \in L$
 - Check if u and v are k-connected

Fully dynamic pairwise k-connectivity for $k = \log^{o(1)} n$ in $O(n^{o(1)})$ time [Jin Sun'21]

- If *u* and *v* are *k*-connected
 - Remove v from L

L contains at least one vertex from each *k*-cut

u and *v* are in the same *k*-connected component, so they are in the same *k*-cut

$$L = \{1, 2, 3, 4, 5, 6\}$$

L contains at least one vertex Our Approach (Cont.) from each k-cut • Otherwise, u and v are not k-connected • We can find two *k*-connected components • Remove smaller one U and recurse on U |U| < |V(G)|/2• Add neighbours of U to L Each *k*-cut in $G \setminus U$ either (1) is a *k*-cut in *G*, or (2) contains some neighbour of U[CHILP'17]

 $L = \{1, 3, 4, 5, 6\}$

5

k = 3

L contains at least one vertex from each k-cut

 $L = \{1, 2, 4, 5, 6\}$

L contains at least one vertex from each k-cut

L contains at least one vertex from each k-cut

L contains at least one vertex from each k-cut

 $L = \{1, 4\}$

Conclusion

• Our results (for $k = \log^{o(1)} n$)

- Maximal k-edge-connected subgraphs in $O(m + n^{1+o(1)})$ time
- Decremental maximal k-connected subgraphs in $O(m^{1+o(1)})$ time
- Open problems
 - Remove constraint on k
 - Improve $n^{o(1)}$ to polylog(n)
 - Weighted / directed graphs
 - Incremental / fully dynamic updates
 - Maximal *k*-vertex-connected subgraphs

Thank you!