Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k

Thatchaphol Saranurak
University of Michigan

Wuwei Yuan
IIIS, Tsinghua University

Maximal k-Edge-Connected Subgraphs Problem

- Graph G is k-(edge-)connected if one needs to delete at least k edges to disconnect G
- Input: undirected unweighted graph $G=(V, E)$ with $n=|V|$ and $m=|E|$ and number k
- Output: unique vertex partition $\left\{V_{1}, \ldots, V_{z}\right\}$ such that,

- $G\left[V_{i}\right]$ is k-connected, and
- there is no $V_{i}^{\prime} \supset V_{i}$ where $G\left[V_{i}^{\prime}\right]$ is k-connected
- Dynamic k-connected subgraphs problem: maintain k-connected subgraphs under updates

k-Connected Components

- Two vertices s and t are k-connected in G if one needs to delete at least k edges to disconnect s and t in G
- Set of vertices S is k-connected if every pair of vertices in S is k connected

Different problems!
y_{3}

Applications

(Dynamic) k-connected subgraphs

Previous Works

Reference	Time	Constraints
Folklore	$\tilde{O}(m n)$	Randomized
[Chechik Hansen Italiano Loitzenbauer Parotsidis SODA'17]	$\tilde{O}\left(m \sqrt{n} k^{O(k)}\right)$	
[Forster Nanongkai Saranurak Yang Yingchareonthawornchai SODA'20]	$\tilde{O}\left(m k+n^{3 / 2} k^{3}\right)$	Randomized
[Georgiadis Italiano Kosinas Pattanayak '22]	$\tilde{O}\left(m+n^{3 / 2} k^{8}\right)$	

All above algorithms require $\Omega\left(n^{3 / 2}\right)$ time when $m=O(n)$ and $k=3$

Previous Works

Reference	Time	Constraints
Folklore	$\tilde{O}(m n)$	Randomized
[Chechik Hansen Italiano Loitzenbauer Parotsidis SODA'17]	$\tilde{O}\left(m \sqrt{n} k^{O(k)}\right)$	
[Forster Nanongkai Saranurak Yang Yingchareonthawornchai SODA'20]	$\tilde{O}\left(m k+n^{3 / 2} k^{3}\right)$	Randomized
[Georgiadis Italiano Kosinas Pattanayak '22]	$\tilde{O}\left(m+n^{3 / 2} k^{8}\right)$	
This work	$O\left(m+n^{1+o(1)}\right)$	$k=\log ^{o(1)} n$

Definitions

- $E(S, T)$: set of edges between S and T
- Vertex set S is a k-cut if $|E(S, V \backslash S)|<k$

Recursive Algorithm

- Each k-connected subgraph is contained in some k-cut

Requires $\Omega(n)$ rounds!

Our Approach

- Key idea: maintain list of vertices L, which contains at least one vertex from each k-cut
- Initially, $L \leftarrow V$
- While $|L|>1$
- Choose arbitrary $u, v \in L$
- Check if u and v are k-connected

Our Approach (Cont.)

L contains at least one vertex from each k-cut

- If u and v are k-connected
- Remove v from L

u and v are in the same k-connected component, so they are in the same

Our Approach (Cont.)

L contains at least one vertex from each k-cut

- Otherwise, u and v are not k-connected
- We can find two k-connected components
- Remove smaller one U and recurse on U
- Add neighbours of U to L

Each k-cut in $G \backslash U$ either
 (1) is a k-cut in G, or

(2) contains some neighbour of U

$$
L=\{1,3,4,5,6\}
$$

Our Approach (Cont.)

L contains at least one vertex from each k-cut

$$
L=\{1,2,4,5,6\}
$$

Our Approach (Cont.)

L contains at least one vertex from each k-cut

3
0

$$
L=\{1,2,4,5\}
$$

Our Approach (Cont.)

L contains at least one vertex from each k-cut

Our Approach (Cont.)

L contains at least one vertex from each k-cut

Our Approach (Cont.)

L contains at least one vertex from each k-cut

- Finally: the remaining graph is k-connected
- \#vertices ever added into L in each recursion step: $O(m)$
- \#recursion levels: $O(\log n)$
- Total running time: $O\left(m^{1+o(1)}\right)$

$$
k=3
$$

$$
|U|<|V(G)| / 2
$$

$$
L=\{1\}
$$

$O\left(m+n^{1+o(1)}\right)$ using sparsification techniques
[GIKP $\left.{ }^{\prime} 22\right]$

Conclusion

- Our results (for $k=\log ^{o(1)} n$)
- Maximal k-edge-connected subgraphs in $O\left(m+n^{1+o(1)}\right)$ time
- Decremental maximal k-connected subgraphs in $O\left(m^{1+o(1)}\right)$ time
- Open problems
- Remove constraint on k
- Improve $n^{o(1)}$ to polylog(n)

Thank you!

- Weighted / directed graphs
- Incremental / fully dynamic updates
- Maximal k-vertex-connected subgraphs

