

A Simple and Fast Reduction from Gomory-Hu Trees to Polylog Maxflows

Maximilian Probst Gutenberg

Rasmus Kyng

Weixuan Yuan

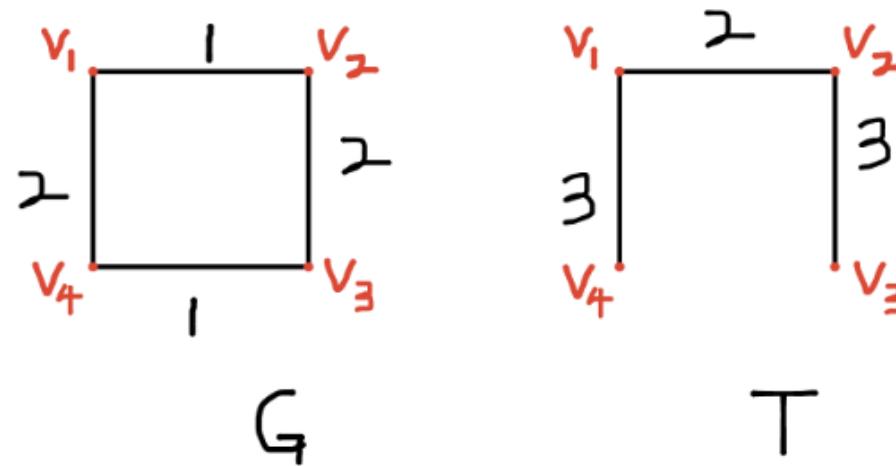
Wuwei Yuan

ETH Zurich

SODA'2026

Gomory-Hu Tree

- Let $G = (V, E, w)$ be an undirected weighted graph with n vertices and m edges.
- A Gomory-Hu tree of G is a tree defined on V such that $\forall s, t \in V, \text{mincut}_T(s, t) = \text{mincut}_G(s, t)$



Prior Works

- Max-flow takes rand. [CKLPPS'22] / deter. [BCKLPPSS'23][BCKLMGS'24] $m^{1+o(1)}$ time.
-

Reference	Rand./Deter.	Time
Gomory-Hu'61	Deter.	$nm^{1+o(1)}$
AKLPST'21	Rand.	$\tilde{O}(n^{2.875})$
Zhang'21	Rand.	$\tilde{O}(n^2)$
AKLPST'21, ALPS'23	Rand.	$m^{1+o(1)}$
AGKLPSYY'25	Deter.	$m^{1+o(1)}$

$\tilde{O}()$ hides polylog factors.

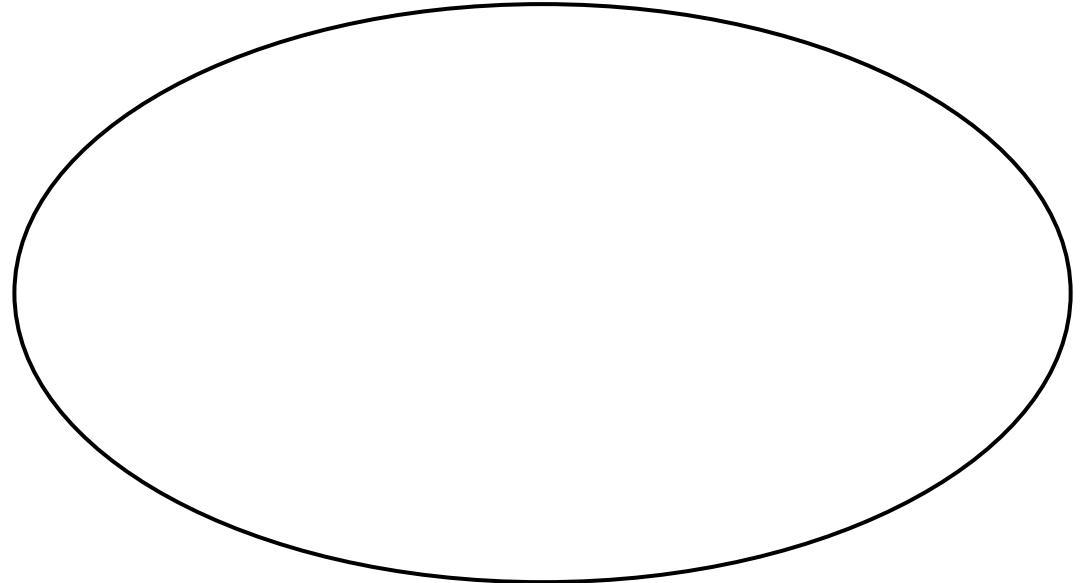
What is Missing?

- 20+ pages subroutine SSMC (single source mincut)
- Fastest algorithm : $\tilde{O}(T(n, m)) + n^{1+o(1)}$ still has a $n^{1+o(1)}$ overhead

Our Contribution

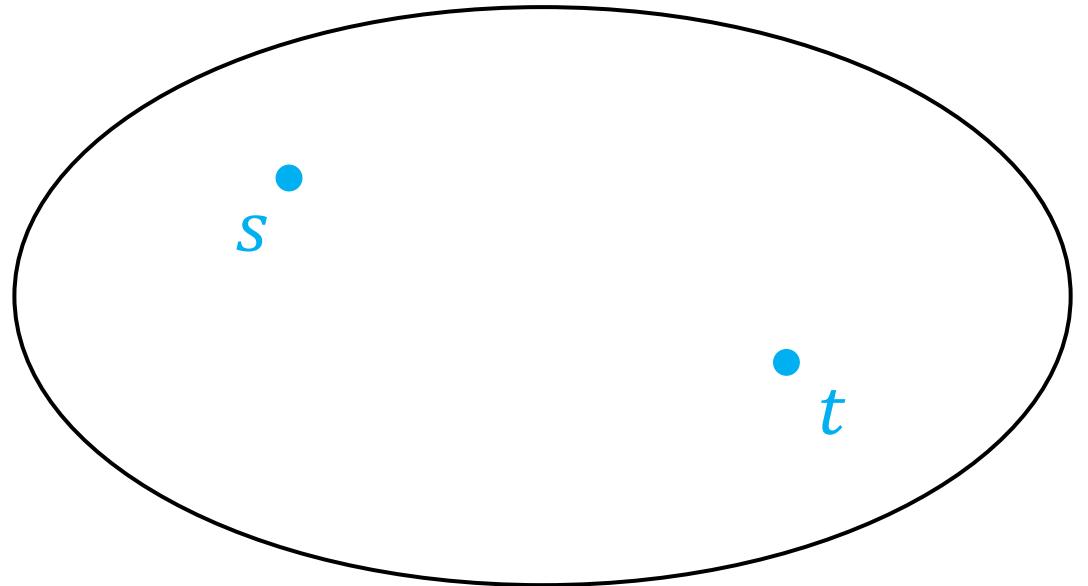
- An optimal algorithm up to $\text{polylog}(n)$ factors for unweighted graphs, i.e., a running time $O(T(n, m) \log^6 n)$
- Very simple algorithm without SSMC
- Follow-up work [PY'25]: a de-randomization of this work

Gomory and Hu's Algorithm [GH'61]



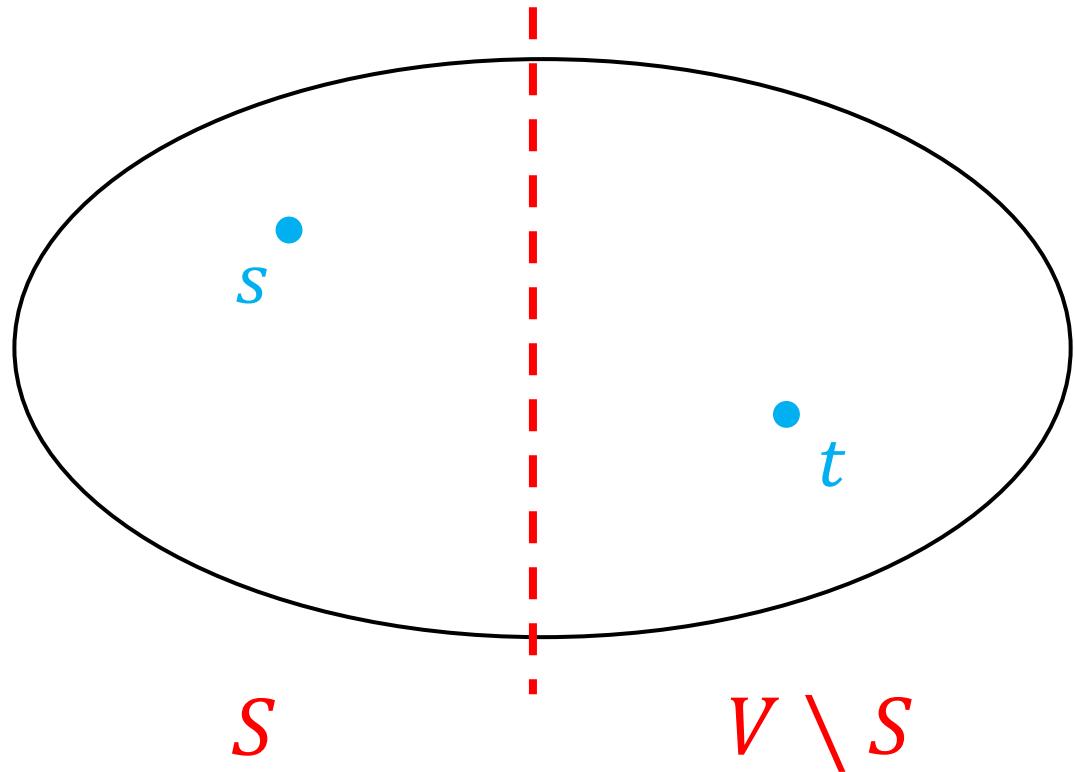
Gomory and Hu's Algorithm [GH'61]

- Pick arbitrary $s, t \in V$.



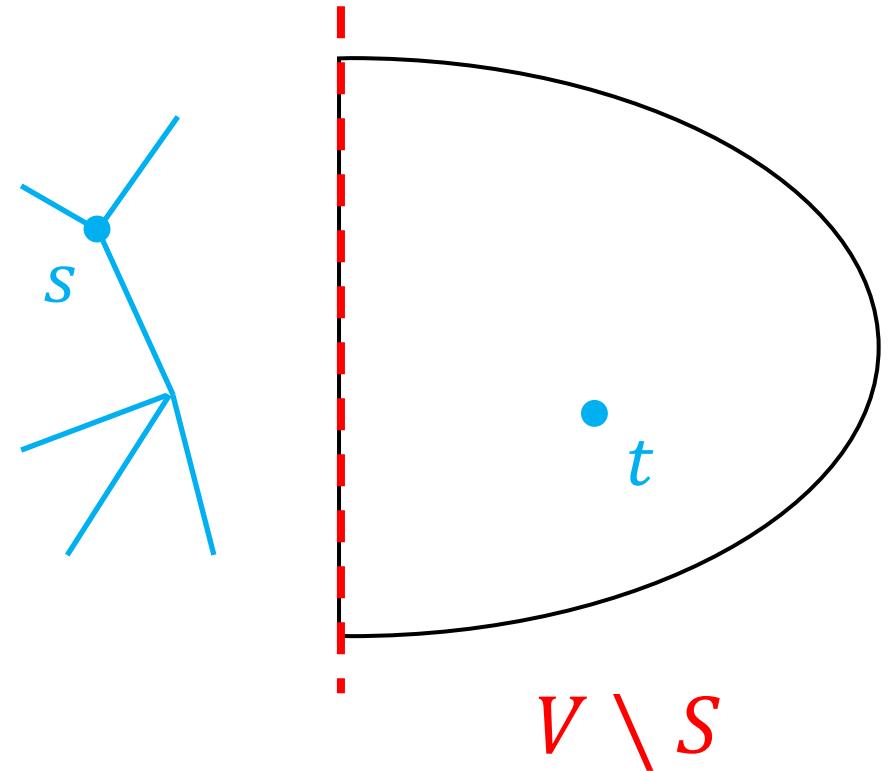
Gomory and Hu's Algorithm [GH'61]

- Pick arbitrary $s, t \in V$.
- Find (s, t) -mincut $(S, V \setminus S)$.



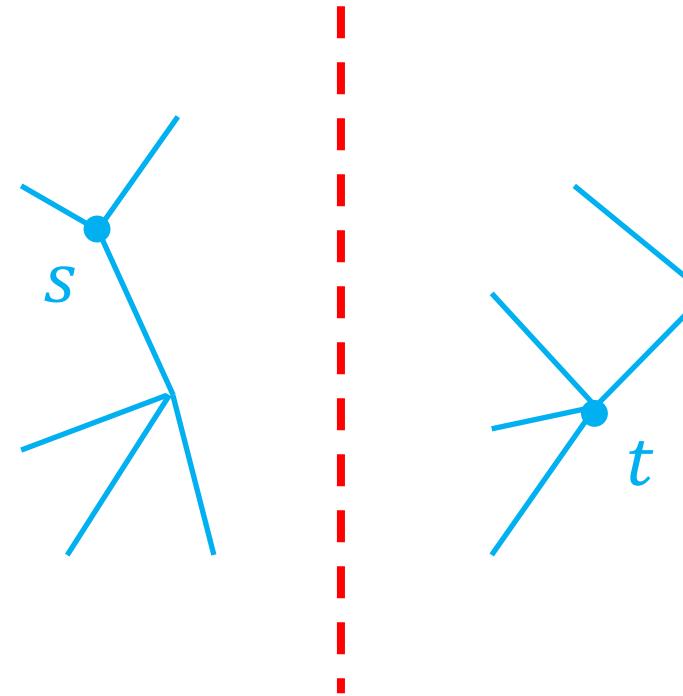
Gomory and Hu's Algorithm [GH'61]

- Pick arbitrary $s, t \in V$.
- Find (s, t) -mincut $(S, V \setminus S)$.
- Recurse on each side.



Gomory and Hu's Algorithm [GH'61]

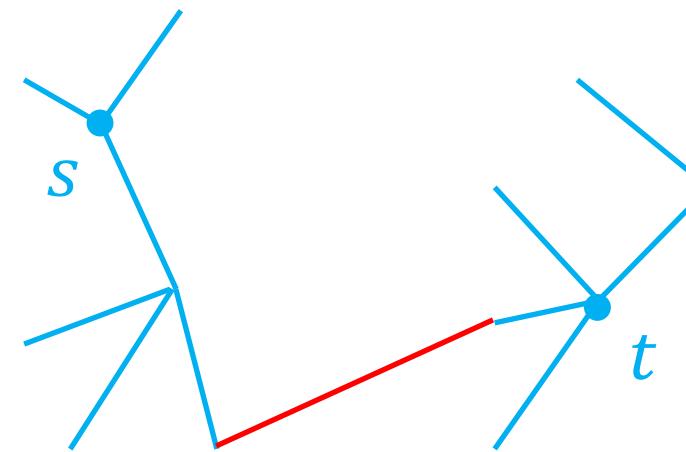
- Pick arbitrary $s, t \in V$.
- Find (s, t) -mincut $(S, V \setminus S)$.
- Recurse on each side.



Gomory and Hu's Algorithm [GH'61]

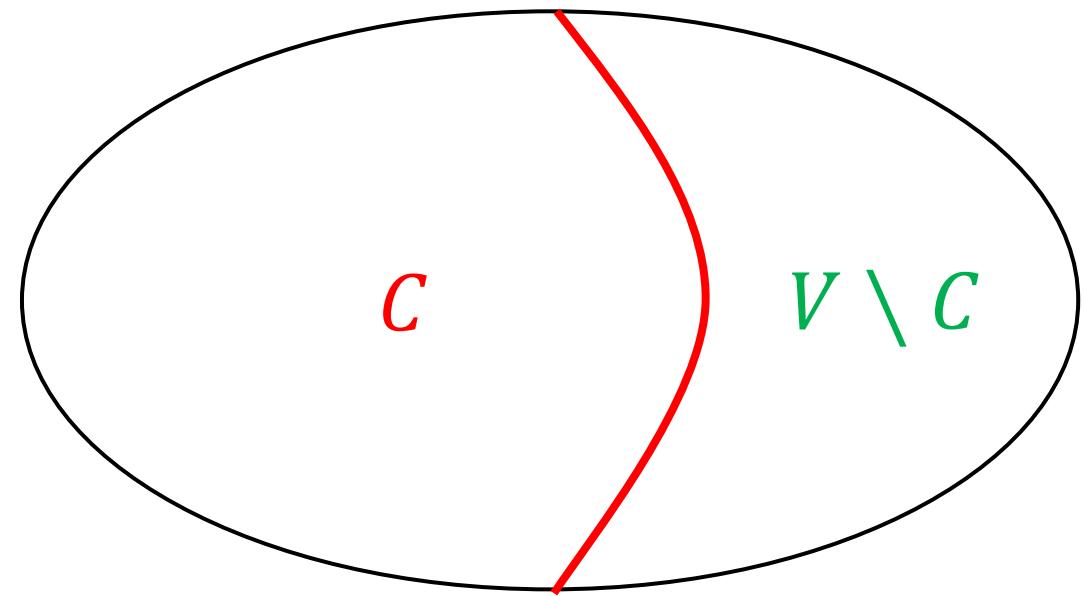
- Pick arbitrary $s, t \in V$.
- Find (s, t) -mincut $(S, V \setminus S)$.
- Recurse on each side.
- Merge two parts together.

- Each level: max-flow takes $\Omega(m)$ time.
- #levels can be $\Omega(n)$.
- Total time: $\Omega(nm)$. Too slow!



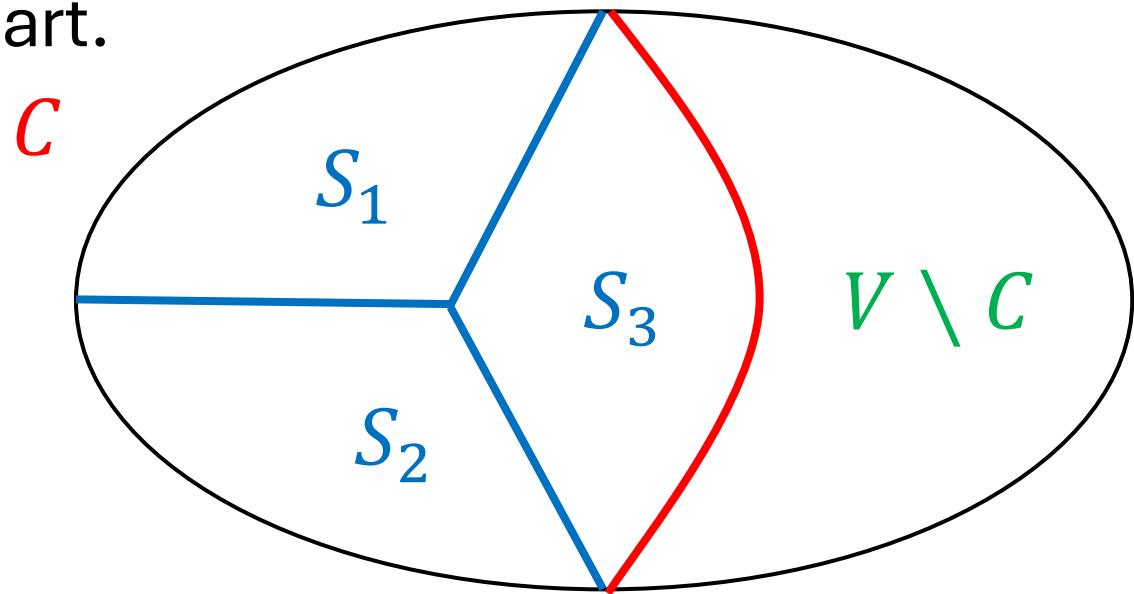
Core Idea: Find Balanced Decomposition

- Find threshold τ s.t.:
- Largest τ -connected component C contains $\geq |V|/2$ vertices, and



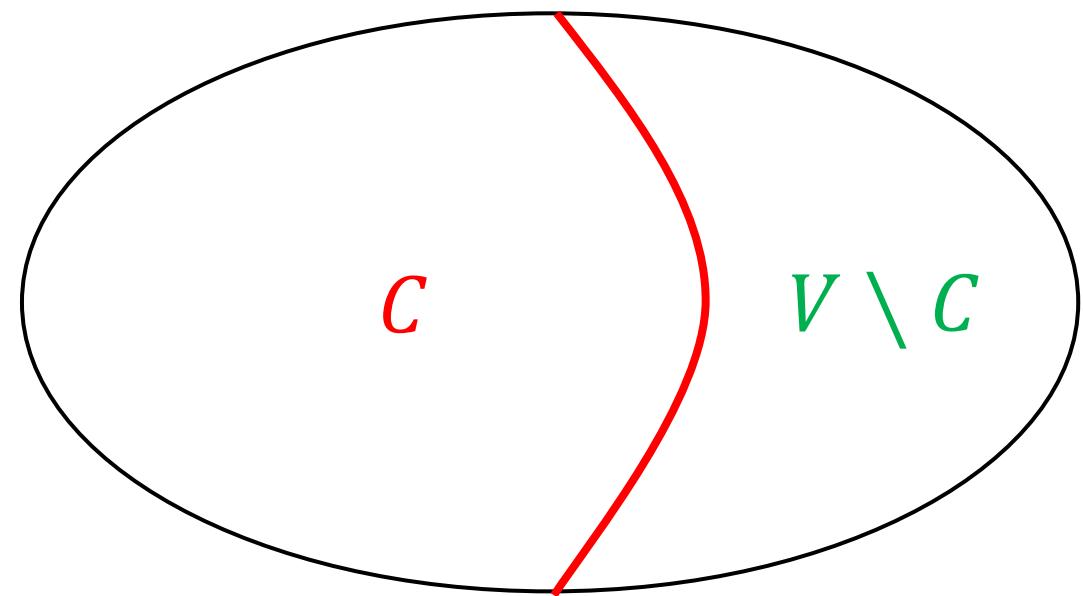
Core Idea: Find Balanced Decomposition

- Find threshold τ s.t.: $\Rightarrow |V \setminus C| \leq |V|/2$
- **Largest τ -connected component C** contains $\geq |V|/2$ vertices, and
- Every $(\tau + 1)$ -connected component S_i contains $< |V|/2$ vertices.
- Computing GH-tree on each part.
- Merge them together.



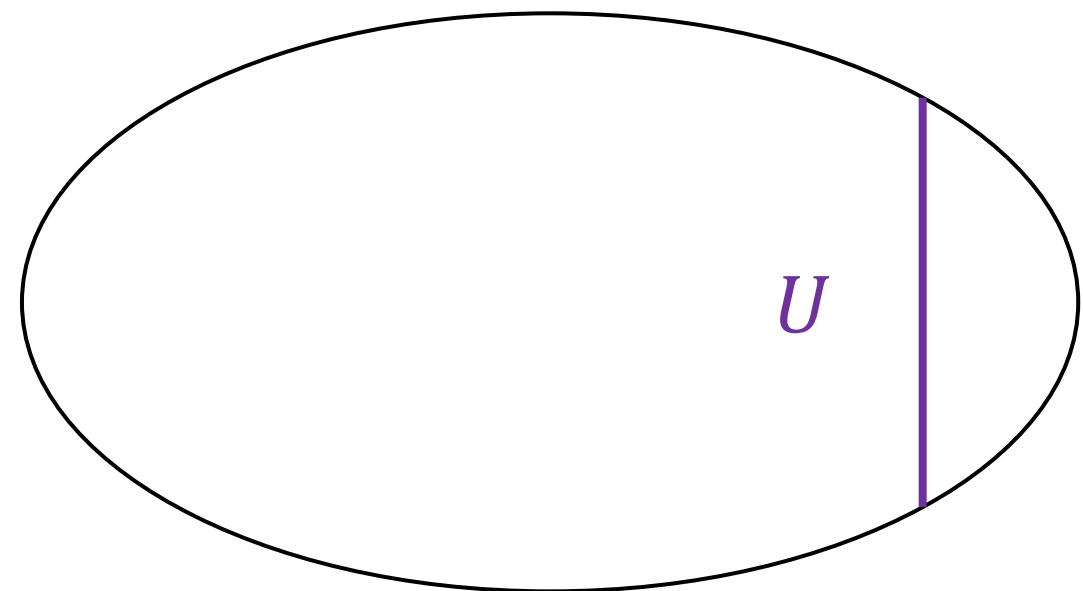
Find τ and Largest τ -Connected Component C

- Do binary search on τ .
- Assume largest τ -connected component C contains $\geq |V|/2$ vertices.



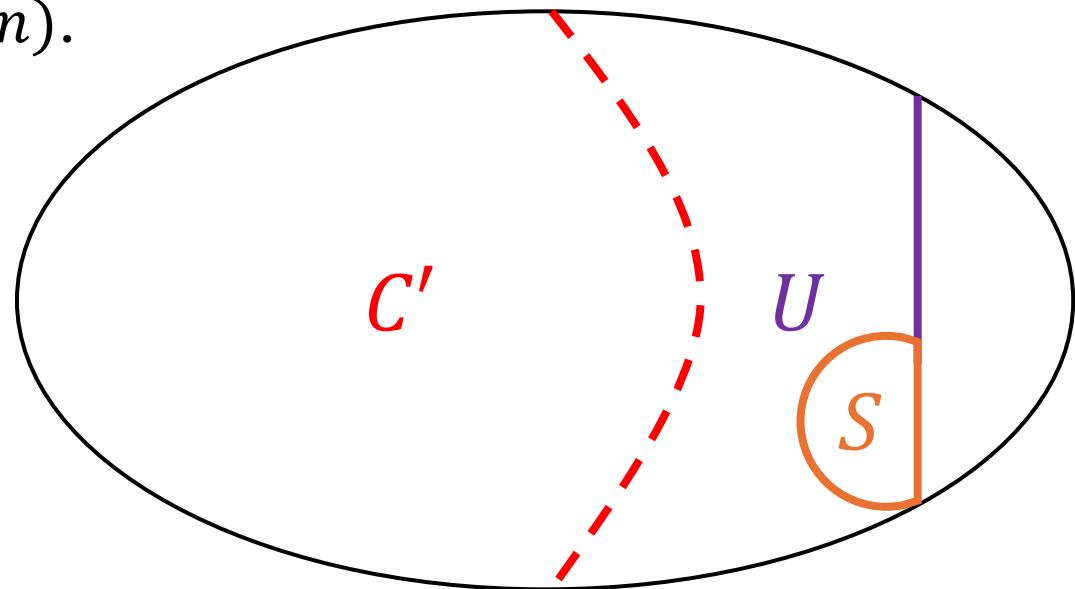
Balanced Partition Lemma

- Lemma: given τ' and terminals $U \subseteq V$,



Balanced Partition Lemma

- Lemma: given τ' and terminals $U \subseteq V$, there is algorithm finds collection \mathcal{S} of disjoint vertex sets s.t.
 - Each vertex set $S \in \mathcal{S}$ satisfies $|E(S, V \setminus S)| < \tau'$ and $|S \cap U| \leq |U|/2$,
 - Let C' be largest τ' -connected component in G w.r.t. U , we have $\mathbb{E}(|\cup_{S \in \mathcal{S}} S \cap U|) \geq \Omega(|U \setminus C'|/\log n)$.
- Via isolating mincut [LP'20].

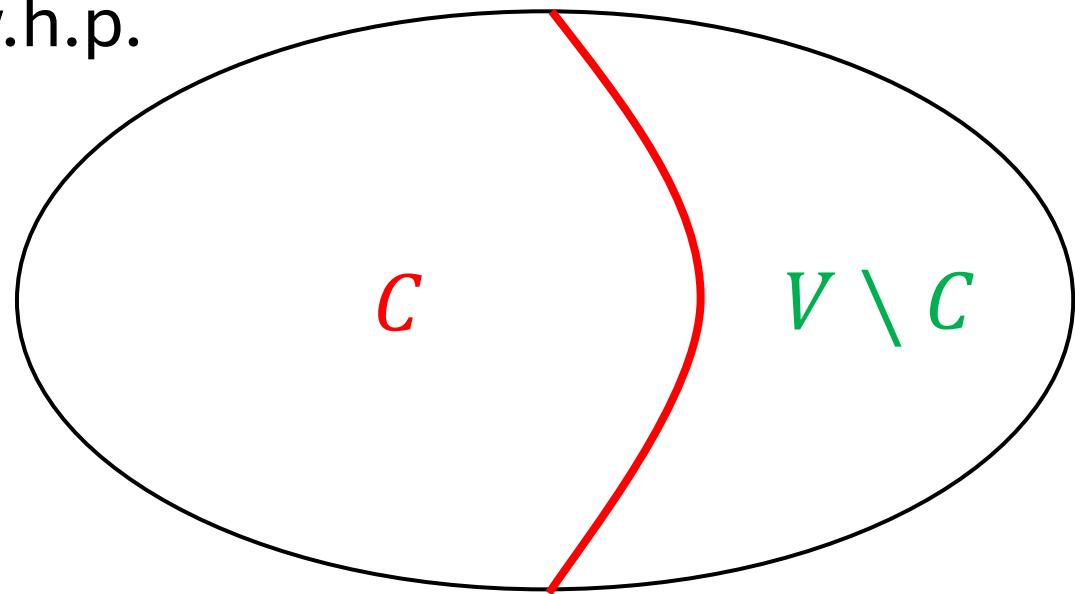


Find τ and C (Cont.)

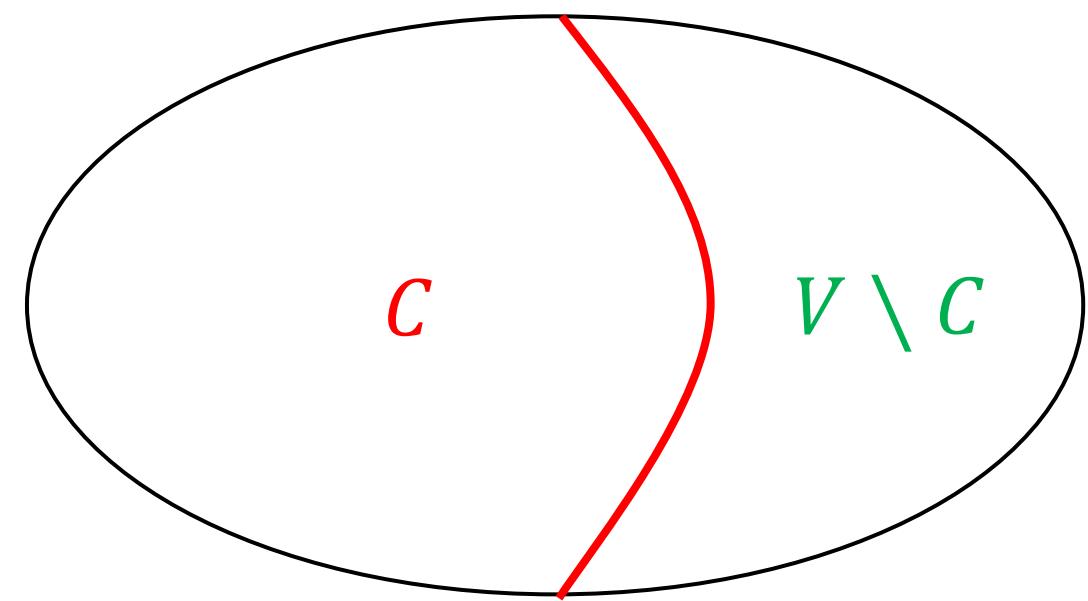
Balanced partition lemma: given τ' and terminals $U \subseteq V$, there is algorithm finds collection \mathcal{S} of disjoint vertex sets s.t.

- Each $S \in \mathcal{S}$ satisfies $|E(S, V \setminus S)| < \tau'$ and $|S \cap U| \leq |U|/2$,
- Let C' be largest τ' -connected component in G w.r.t. U , we have $\mathbb{E}(|\bigcup_{S \in \mathcal{S}} S \cap U|) \geq \Omega(|U \setminus C'|/\log n)$.

- Do binary search on τ . Set $\tau' = \tau$ and $U = V$.
- Assume largest τ -connected component C contains $\geq |V|/2$ vertices.
- In each round, remove $\Omega(1/\log n)$ fraction of vertices from $U \setminus C$.
- After $\mathcal{O}(\log^2 n)$ rounds, $U = C$ w.h.p.

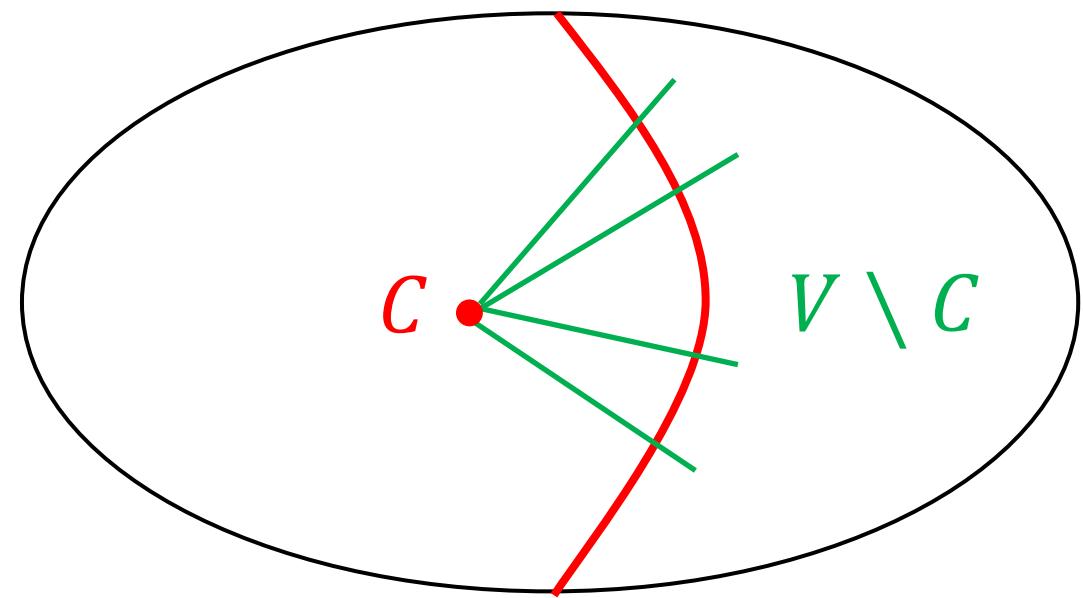


Gomory-Hu Tree on $V \setminus C$



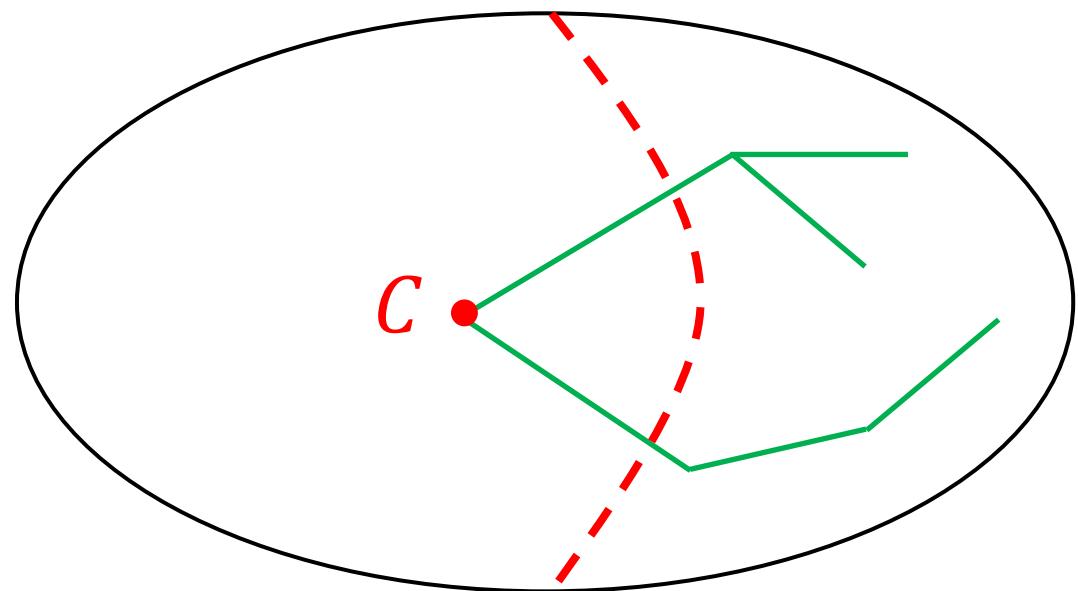
Gomory-Hu Tree on $V \setminus C$

- Contract C into one vertex.

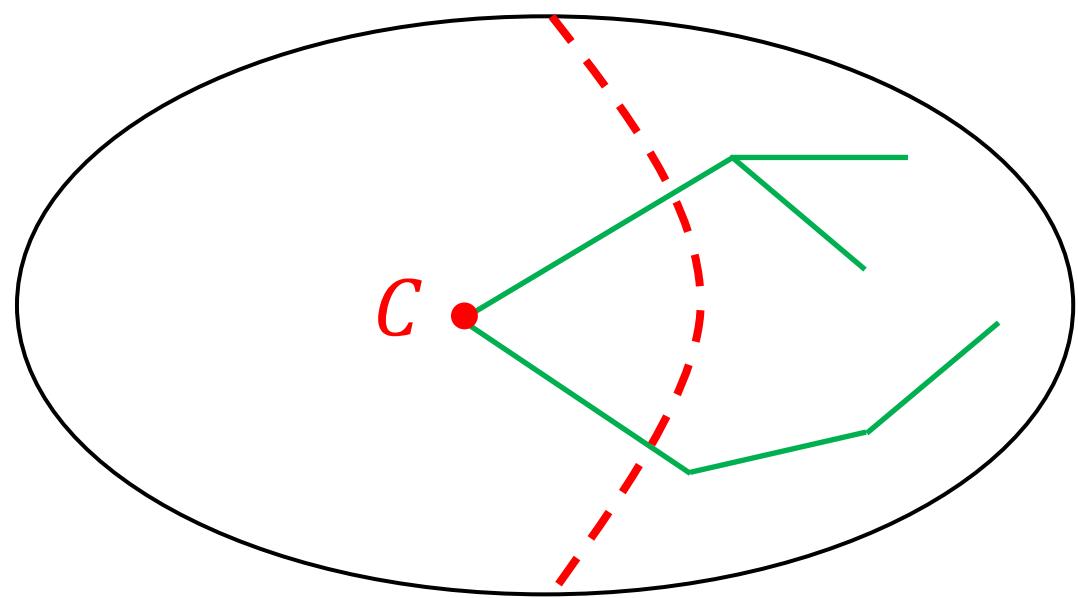


Gomory-Hu Tree on $V \setminus C$

- Contract C into one vertex. $\Rightarrow |V(G/C)| \leq |V|/2 + 1$
- Recursively compute GH-Tree on G/C . $\Rightarrow T_{small}$



Find S_i
 $(\tau + 1)$ -connected component

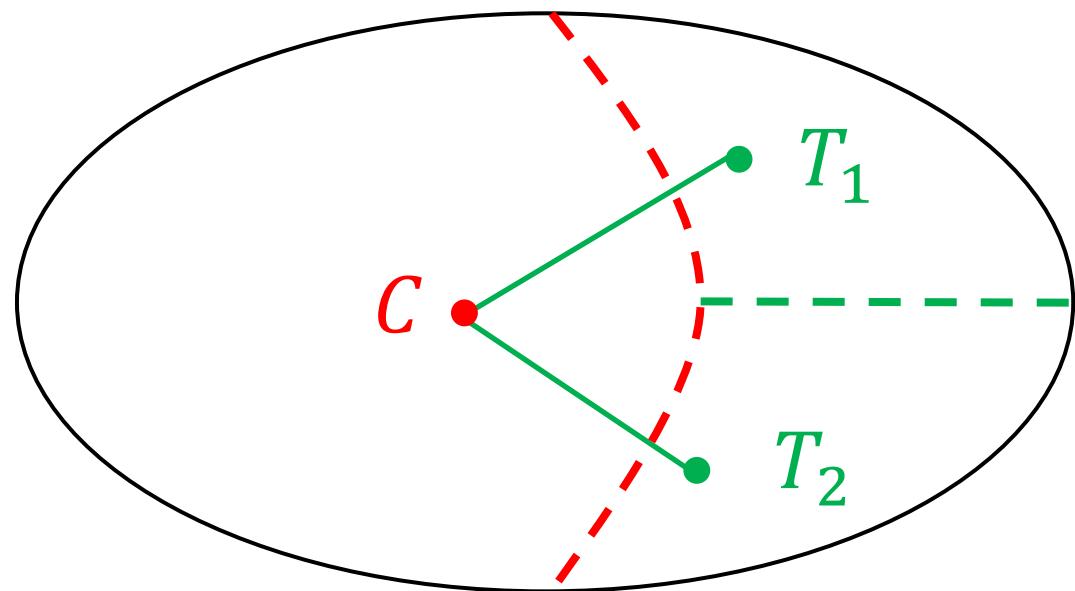


Find S_i $(\tau + 1)$ -connected component

Balanced partition lemma: given τ' and terminals $U \subseteq V$, there is algorithm finds collection \mathcal{S} of disjoint vertex sets s.t.

- Each $S \in \mathcal{S}$ satisfies $|E(S, V \setminus S)| < \tau'$ and $|S \cap U| \leq |U|/2$,
- Let C' be largest τ' -connected component in G w.r.t. U , we have $\mathbb{E}(|U_{S \in \mathcal{S}} S \cap U|) \geq \Omega(|U \setminus C'|/\log n)$.

- Contract each "subtree" in T_{small} .
- Use balanced partition lemma with $\tau' = \tau + 1$ and $U = C$.

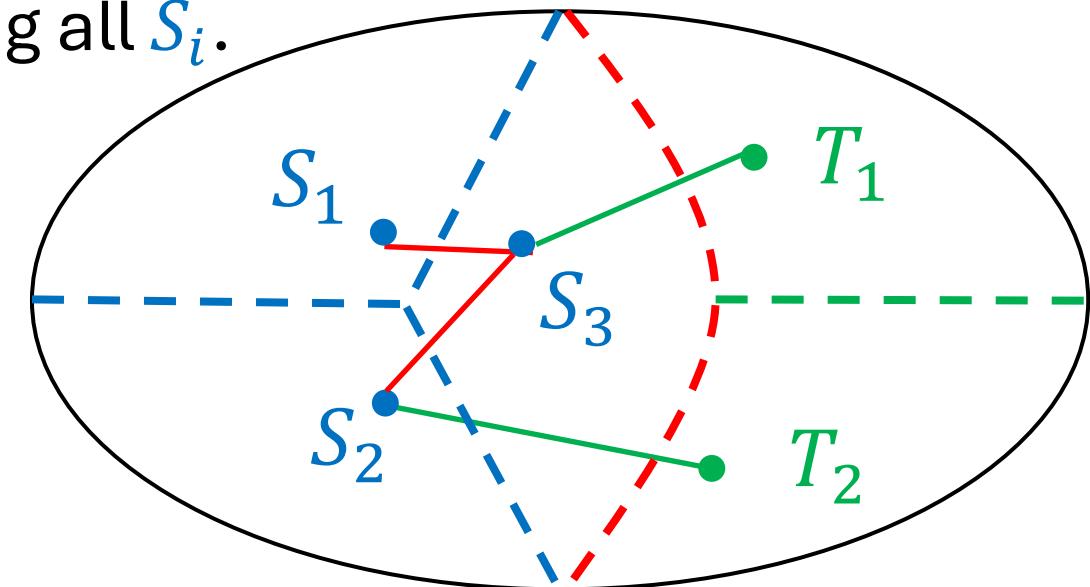


Find S_i $(\tau + 1)$ -connected component

Balanced partition lemma: given τ' and terminals $U \subseteq V$, there is algorithm finds collection \mathcal{S} of disjoint vertex sets s.t.

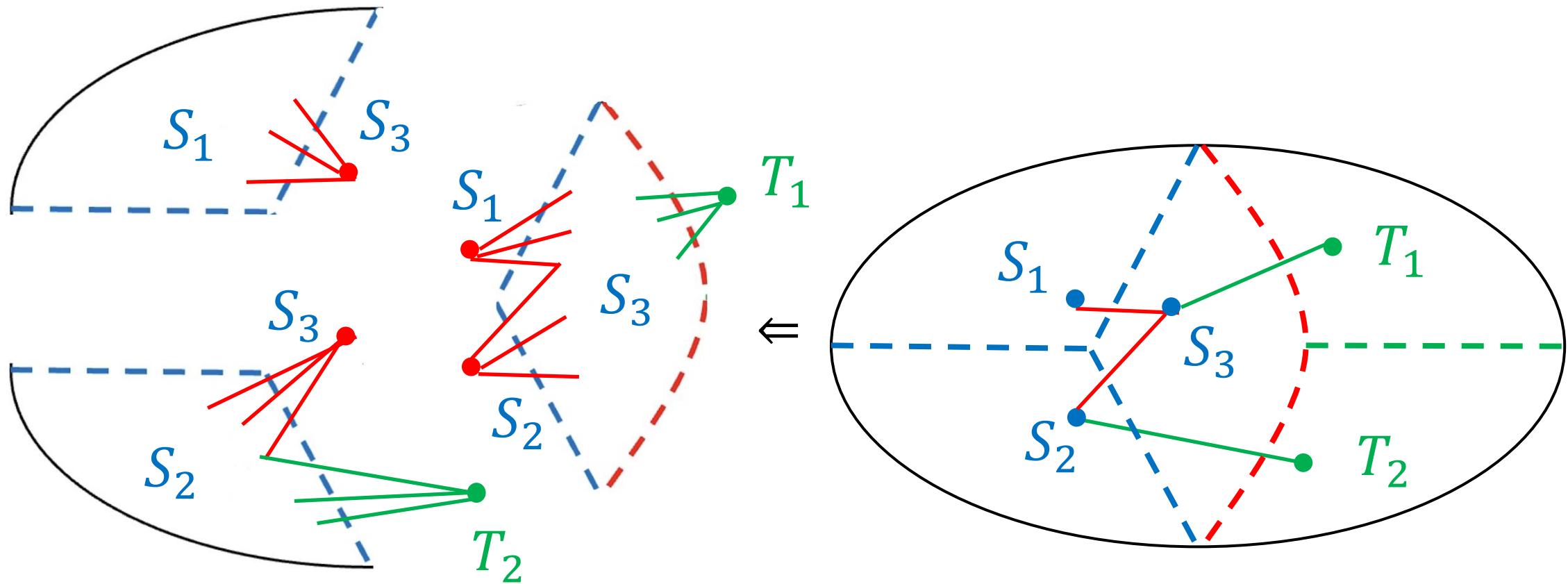
- Each $S \in \mathcal{S}$ satisfies $|E(S, V \setminus S)| < \tau'$ and $|S \cap U| \leq |U|/2$,
- Let C' be largest τ' -connected component in G w.r.t. U , we have $\mathbb{E}(|U_{S \in \mathcal{S}} S \cap U|) \geq \Omega(|U \setminus C'|/\log n)$.

- Contract each "subtree" in T_{small} .
- Use balanced partition lemma with $\tau' = \tau + 1$ and $U = C$.
- Recurse on $U \setminus \bigcup_{S \in \mathcal{S}} S$ and each S , until reaching $\mathcal{O}(\log^2 n)$ levels.
- Also find "GH-Tree" T_{large} linking all S_i .



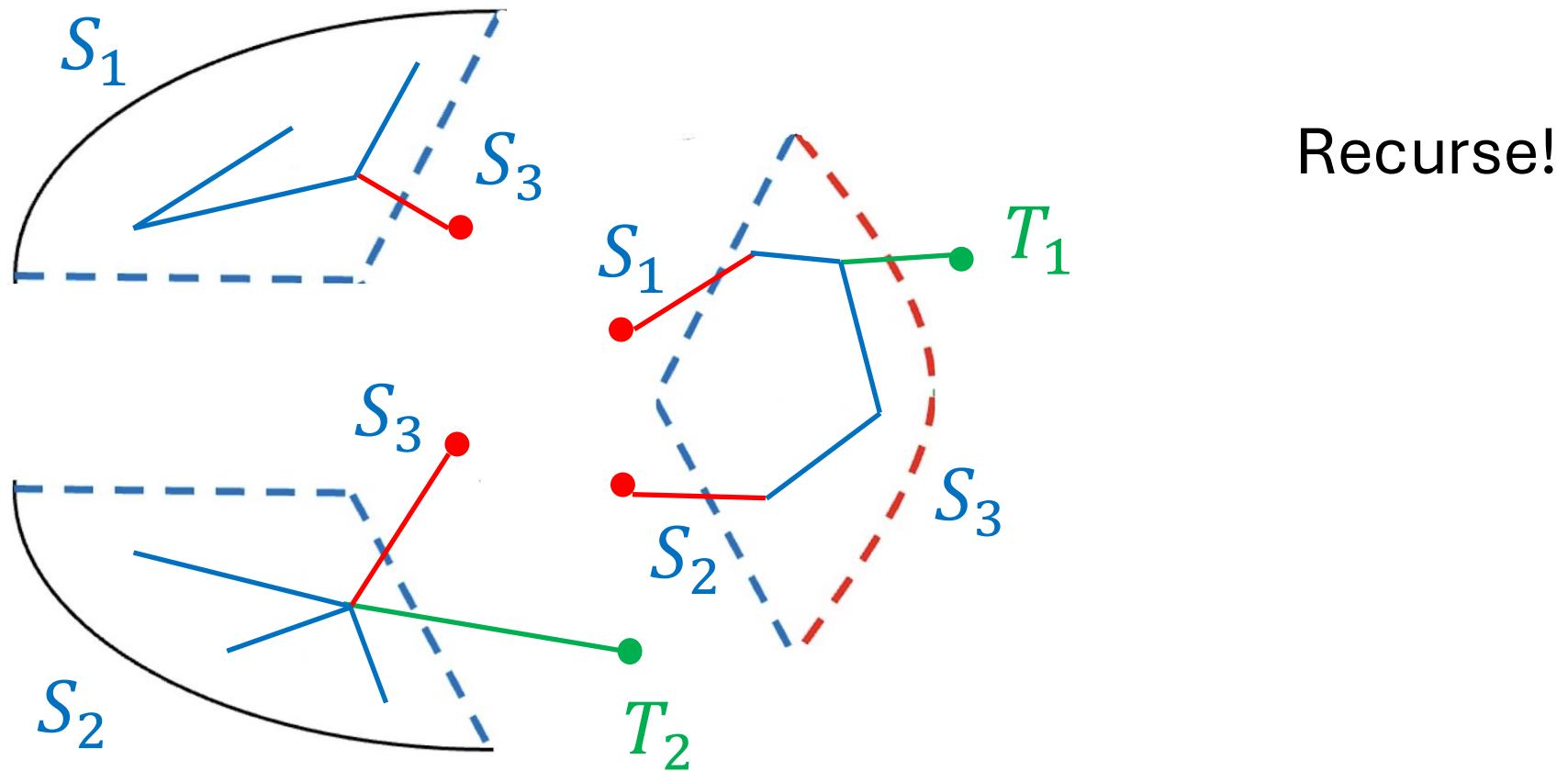
Gomory-Hu Tree on S_i

- For each S_i , contract every “subtree” in T_{large} .

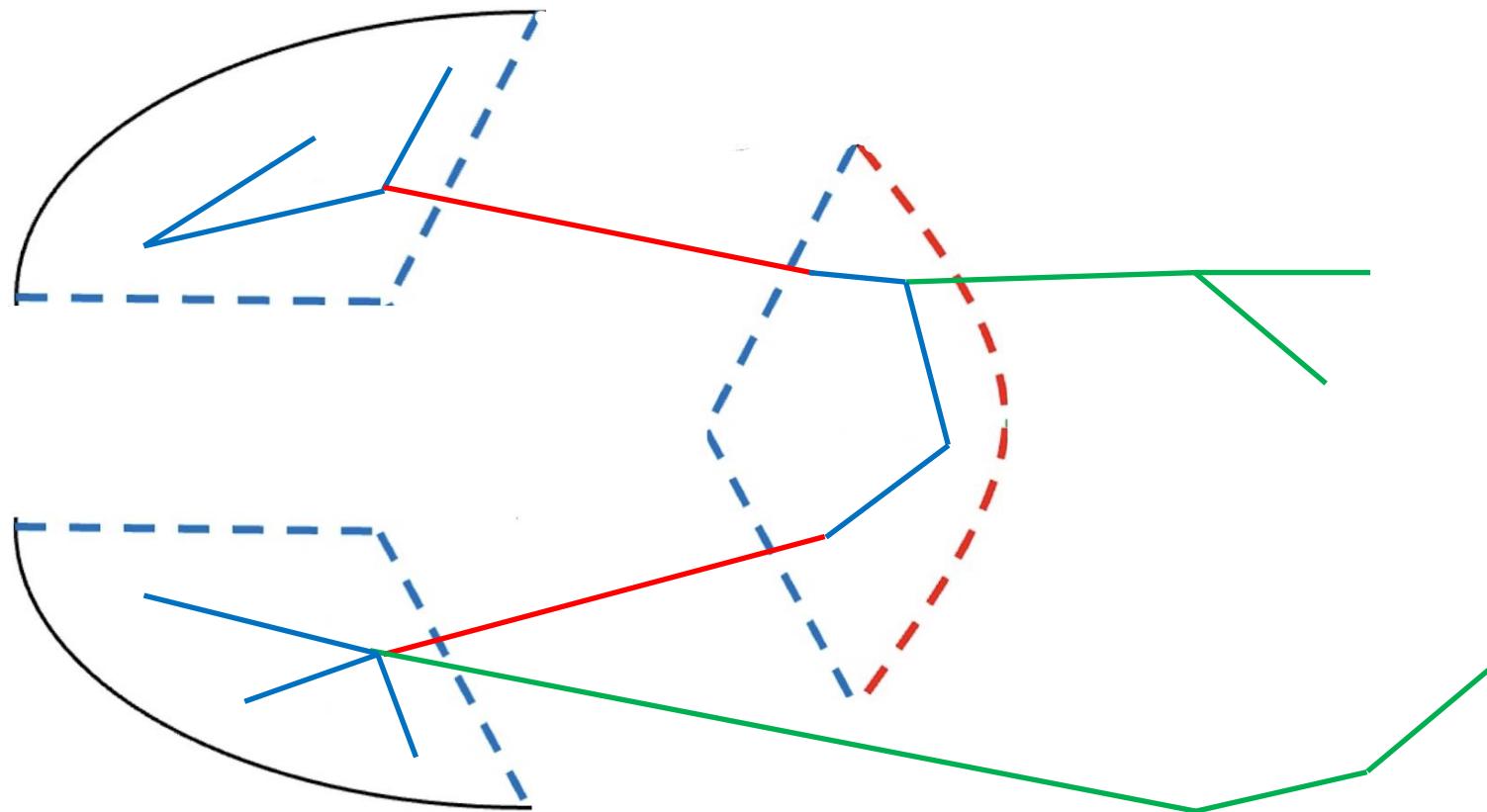


Gomory-Hu Tree on S_i

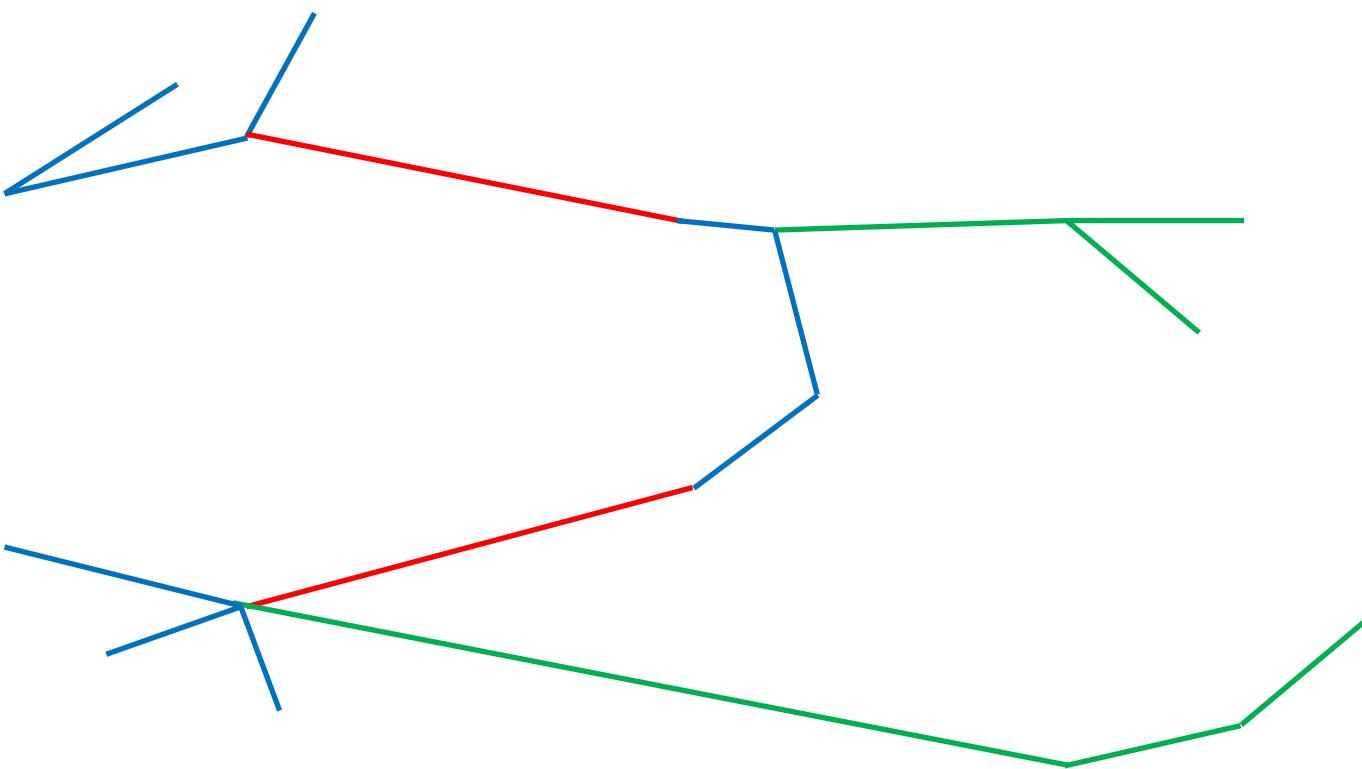
- For each S_i , contract every “subtree” in T_{large} .



Merge All Together



Merge All Together



Summary

- (Randomized) reduction from Gomory-Hu tree to $\mathcal{O}(\log^6 n)$ maxflows on unweighted graphs.
- Simple algorithm. Also works for hypergraphs.
- See also: [PY'25] deter. reduction to maxflows and expander decompositions with total size $\tilde{\mathcal{O}}(m)$ on unweighted graphs.
- Open problems:
 - Weighted graphs?
 - Element connectivity?
 - Maxflow in $\tilde{\mathcal{O}}(m)$ time?

Thanks!