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Gomory-Hu Tree

*LetG = (V,E,w) be an undirected weighted graph with n vertices
and m edges.

* A Gomory-Hu tree of G is a tree defined on IV such that
Vs,t € V, mincut;(s,t) = mincut; (s, t)
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Prior Works

* Max-flow takes rand. [CKLPPS’22] / deter. [BCKLPPSS’23][BCKLMGS’24]
m1to) time.

Gomory-Hu’61 Deter. nmito)
AKLPST’21 Rand. 0(n?87%)
Zhang’21 Rand. 0(n?)
AKLPST’21, ALPS’23 Rand. mito®)
AGKLPSYY’25 Deter. mito(®)

O() hides polylog factors.



What is Missing?

* 20+ pages subroutine SSMC (single source mincut)

* Fastest algorithm : 0(T (n,m)) + n'*t°W still has a nt*to)
overhead



Our Contribution

* An optimal algorithm up to polylog(n) factors for unweighted

graphs, i.e., a running time O(T(n, m) log® n)
* Very simple algorithm without SSMC

* Follow-up work [PY’25]: a de-randomization of this work



Gomory and Hu’s Algorithm [GH’61]




Gomory and Hu’s Algorithm [GH’61]

* Pick arbitrary s, t € V.




Gomory and Hu’s Algorithm [GH’61]

* Pick arbitrarys,t € V.
* Find (s, t)-mincut (S, V \ S).




Gomory and Hu’s Algorithm [GH’61]

* Pick arbitrarys,t € V.
* Find (s, t)-mincut (S, V \ S).

|
|
|
|
|
 Recurse on each side. :
|
|
|
|

V\S



Gomory and Hu’s Algorithm [GH’61]

* Pick arbitrarys,t € V.
* Find (s, t)-mincut (S,V \ S).
* Recurse on each side.



Gomory and Hu’s Algorithm [GH’61]

* Pick arbitrary s, t € V.

* Find (s, t)-mincut (S,V \ S).
* Recurse on each side.

* Merge two parts together.

* Each level: max-flow takes Q2(m) time.
* #levels can be ((n).
* Totaltime: QQ(nm). Too slow!



Core ldea: Find Balanced Decomposition

* Find threshold 7 s.t.:
* Largest 7-connected component C contains > |V|/2 vertices, and

C V\C




Core ldea: Find Balanced Decomposition

* Find threshold 7 s.t.: = [V\ (] =|V]/2

* Largest 7-connected component C contains > |V|/2 vertices, and
* Every (1 + 1)-connected component S; contains < |V|/2 vertices.
* Computing GH-tree on each part.
* Merge them together. C




Find T and Largest 7-Connected Component C

* Do binary search on .
* Assume largest 7-connected component C contains = |V|/2 vertices.

e




Balanced Partition Lemma

* Lemma: given 7' and terminals U €V,

—




Balanced Partition Lemma

* Lemma: given 7' and terminals U € V, there is algorithm finds
collection & of disjoint vertex sets s.t.
* Eachvertex set S € § satisfies |[E(S,V\ 9)| <t'and|SnU| <|U|/2,
* Let C' be largest 7'-connected component in G w.r.t. U, we have
E(|lUses SN U = QU N\ €' /logn).

* Via isolating mincut [LP’20].




Balanced partition lemma: given 7’ and terminals U € V,
there is algorithm finds s.t.

" - Each satisfies |[E(S,V\ 9)| <t'and|SnU| <|U|/2,
Flnd T and C (COnt’) - Let C' be largest 7'-connected componentin G w.rt. U, we

have E(|U NU|) = QU \C'|/logn).

* Do binary search on . Sett'=7tandU =V.
* Assume largest 7-connected component C contains = |V|/2 vertices.

* In each round, remove (1(1/log n) fraction of vertices from U \ C.
« After O(log? n) rounds, U = C w.h.p.

C V\C




Gomory-HuTreeon I/ \ C

C V\C




Gomory-Hu Treeon V' \ C

e Contract C into one vertex.

C V\C




Gomory-Hu Treeon V' \ C

« Contract C intoonevertex. = |V(G/C0)| <|V|/2+1
* Recursively compute GH-Treeon G/C. = T,




Find Si

(T + 1)-connected component




Balanced partition lemma: given 7’ and terminals U € V,

there is algorithm finds collection & of disjoint vertex sets s.t.

Find S - Each S € S satisfies |E(S,V\ 9| <t and|SnU| <|U|/2,
l

- Let (' belargest 7'-connected componentin G w.r.t. U, we

(T + 1)-connected component have E(|Uscs S nUD = QU \ '] /log n).

* Contract each "subtree”inT.,,,,;;.
* Use balanced partition lemmawitht' =7+ 1and U = C.




Find Si

(T + 1)-connected component

Balanced partition lemma: given 7’ and terminals U € V,

there is algorithm finds collection & of disjoint vertex sets s.t.

- Each S € § satisfies |[E(S,V\ 9)| <t and|SNnU| <|U|/2,

- Let (' belargest 7'-connected componentin G w.r.t. U, we
have E(|lU..c SN U[) = QU \ C'|/logn).

* Contract each "subtree”inT.,,,,;;.
* Use balanced partition lemmawitht' =7+ 1and U = C.

* Recurseon U \ U..: S and each 5, until reaching O(log* n) levels.

* Also find "GH-Tree” T4, linking all §;.




Gomory-Hu Tree on S;

* Foreach §; , contract every “subtree” in T, ..




Gomory-Hu Tree on S;

* Foreach §; , contract every “subtree” in T, ..

Recurse!




Merge All Together




Merge All Together
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Summary

* (Randomized) reduction from Gomory-Hu tree to O(log® n)
maxflows on unweighted graphs.

* Simple algorithm. Also works for hypergraphs.

* See also: [PY’25] deter. reduction to maxflows and expander
decompositions with total size O(m) on unweighted graphs.
* Open problems:
* Weighted graphs?
* Element connectivity?
* Maxflow in O(m) time?

Thanks!
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